

Regional Hydrological Modelling

Dr. E.P. Querner

Aim: keep it simple

Contents

- Aim of modelling and project goal
- Hydrological processes
- Model applications

- Physically based (white box)
 sub-processes conceptual ('grey box')
- Simulate processes as accurately as possible
- Not too much input data
- Modular set-up

sub-modules standalone

select sub-modules best suited for project goal

• For practical problems and hydrological research

Project goal

Ideal schematisation (hydrological processes)

- Study area
- Available data
- Time and money

Acceptable schematisation

Select type of model (check calculation time not too much)

Groundwater and surface water flow

Overview of hydrological processes considered in the regional models (marked with x)

Model	Saturated zone			Unsat. zone	Surface water		
	regional (multi-layer)		phreatic	pseudo steady	constant	unsteady state	
	steady	unsteady	level	State	level	reservoir	network
FEMSATS	X				X		
FEMSAT		X			X		
SIMGRO		X		X		Х	
SIMFLOW			Х	X	X		
SIMWAT							Х
SIMPRO*			Х	X			Х
MOGROW**		Х		Х			x

- * SIMPRO = SIMWAT + SIMFLOW
- ** MOGROW = SIMWAT + SIMGRO

Schematisation in SIMGRO

Finite element network

Unsaturated zone

Storage coefficient

Processes unsaturated zone

- Perched water tables
- Hysteresis
- Preferential flow
- Surface runoff

Urban areas

Modelling instruments

- SimGro Model
- AlterrAqua (GIS interface)
 Building the model application

Presentation of input data and results

Example input data

Model applications

Pantanal, Taquari

Regions nearly permanent flooded

Watercourses and subcatchments (from DTM)

Nodal network

Is this the challenge ?

