

APPLICATION OF AN INTEGRATED 3-D HYDROLOGICAL HYDRAULIC MODEL, COUPLED WITH A HIGH RESOLUTION DIGITAL ELEVATION MODEL, ON A WETLAND AREA IN THE SOUTH-WEST OF IRELAND

J. Philip O'Kane Luca Migliori

Dept. of Civil & Environmental Engineering, UCC Environmental Research Institute, UCC

Richard H. Cuenca Dept. of Bioengineering, Oregon State University, USA

The Lower Feale catchment

Cork

The Lower Feale

Flooding

Flooding

Department of Civil & Environmental Engineering

University College Cork (NUI)

Sluiced culvert

Department of Civil & Environmental Engineering

University College Cork (NUI)

Polder system - year 1500 in the Netherlands

Polders - 15

POLDER	CATCHMENT AREA (km2)	POLDER	CATCHMENT AREA (km2)
C2R	4.86	C2A	2.23
C4HA	1.0	C5A	3.64
C2K	7.52	C20	1.67
C2U	4.29	C5B	2.41
C3C	5.40	C32A	1
C2M	4.34	C18	1.63
C3A	5.08	C23	0.92
C4H	1.09		

Areas of the 15 Polders in the Feale Model [Table 4 in John Martin's, PhD thesis]

The Feale system in 200 km²

	NUMBER	LENGTH (km)	$STORAGE (km^3)$
MAIN TIDAL CHANNELS & TIDAL TRIBUTARIES	6	49	-
NON TIDAL (SLUICED) TRIBUTARIES	6	16	0.55
BACK-DRAINS & LAND DRAINS	45	66	0.53
EMBANKMENTS	-	107	-
SLUICED CULVERTS	55	1.3	-
SLUICED BARRAGES	4	-	-
WEIRS	4	-	-

Arterial drainage scheme – 1950 worked then not working now!

Flap valve

Sluiced barrage - Crompaun/Brick

Gate - 5'x4' teak

Models

Software

MODEL	SOFTWARE PACKAGE	FUNCTION	DATA REQUIRED
Feale_NET	Mike11 (2000b)	To compute Hydrodynamics and Water Levels	Discharge Data, Water Level Data, Cross-section Data, Sluiced Culvert & Hydraulic Structure Data, Feale_RR Results
Feale_RR	Mike11 NAM (2000b)	To compute magnitude of Rainfall Run-off Flux	Rainfall Data, Soil data
Feale_DEM	ERMapper5.5, ArcView 3.2a	Digital Representation of Topography of the Floodplain	Digital Image Data, Results of Processing of Digital Image Photogrammetry
Feale_GIS	Mike11, ArcView 3.2a, Mike11-GIS (2000b)	To integrate Hydrodynamic Water Level Data with Topography to generate Floodmaps	Digital Elevation Model (Feale_DEM), Results of Feale_NET, Data about Floodplain Control Features
Feale_EVAL	Microsoft Excel 97	Analysis of Feale_NET Model Results to compute benefits of Flood alleviation measures (in terms of reduction in water level and flood inundated area	Results of Feale_NET, Area Elevation Curves

RGB, nIR, panchromatic visible data 20cm pixel

ERmapper algorithm identifies wet and dry areas

Merged over-flights missing data

DEM 20cm vertical resolution - 1m horizontal grid

Each pixel (*x*,*y*,*z*) geo-referenced to national grid +/- 20cm

Contour map

Feale NET at 1:50,000

10m contour shown in yellow

backdrains i red

embanked channels in black

Integrated flood model

Feale_NET

Water level data

Water flow data

Calibration

Residual error

Flood maps

Department of Civil & Environmental Engineering

University College Cork (NUI)

Verification

Social calibration

Social calibration

Department of Civil & Environmental Engineering

University College Cork (NUI)

Gradient vector field

Pause for flood animations

Historical analysis

- Remove the hydraulic infrastructure
- restore the land to 12' OD (ordnance datum)
- simulate - -

* result: large inundation

Historical analysis

- Insert the 1950s scheme
- place the land at 12' OD (ordnance datum)
- place the inverts of all culverts at 6' OD
- simulate --

*result: no flooding

Historical analysis

• Why has the performance of the system deteriorated?

Hydraulic head through the culverts has declined in magnitude frequency duration

Historical analysis

• Why has the performance of the system deteriorated?

River sediment no longer floods onto callows confined to the embanked channels

Historical analysis

• Why has the performance of the system deteriorated?

Settlement of the landscape Lower water level in the fields Removes buoyant support Consolidation of soil Bio-oxidation of the peat

Historical analysis

Confirmation of hypothesis?

. . .

Historic maps Alexander Nimmo 1815

Reference to similar landscapes The Netherlands The Fens

Alternatives

• Re-engineer the hydraulic system

Alternatives

- Re-engineer the hydraulic system
 - individual sluiced culverts
 - all culverts in a polder
 - all polders together

Minor improvement Not credible with stakeholders

Alternatives

- Storm gates in the mouth of the estuary
 - to keep out storm surge and spring tides

traps river floods

Alternatives

- New interceptor drains
 - to divert runoff away from the polders

purchase of way leave expensive

Alternatives

• Dredging

Is the estuary blocked?

Dredging

- Depth
- Shape
 - side-slopes less than 1:1.5
- Path
 - start at the mouth
 - different end points in the network
 - one
 - many

Two reference floods at Listowel

- 50 years of flows
 - December 1997 January 1998 minor floods, return period 2 years
 - March 1998, return period 9 years

Dredging

Alternatives

- Pumping
 - very flexible
 - comparable costs and benefits
 - response of farmers unknown
 - best agricultural use
 - water table in the fields
 - water level in field- and back-drains
 - set-point of the pumps
 - pilot experiment underway!

Pumping station to dewater a test polder

Raised peat bog with active cutting of peat

Pumps:

- •3 submersible pumps
- •170 l/s discharge each

The Study Case:

C2M Polder and the Control Polder

Instruments installed on site

Eddy Covariance Station - Energy Fluxes

Kerry - Station #1 - Energy Balance Components - 2003

--- LE --- H - Sonic --- Rnet --- G

OTT-Orphimedes Water Level Gauge

Ground Water Levels recorded

- * Pump Polder GWL5/GWL5
- * Rain Gage/Rain Gage Upland Area

Ground Water Levels recorded

Water Levels recorded

Water Levels recorded

Boreholes logs

Resistivity Survey

ArcGIS Database

Coupled model: 3D groundwater (SHE) + network model preliminary results – Water level in the drains

Coupled model preliminary results – ground water level

The Lower Feale Experiment

Conclusions:

Further calibration of the coupled model, not easy

➢ Mismatch between data and prediction raises the question: Why? and leads to insight into models, data and processes.

Waiting for flood events to test the effectiveness of pumps (One major and several minor floods)

The Future

- Conservation and development plan
 - proposed Special Area of Conservation
 - restore wet-lands
 - eco-tourism
 - wind mills
 - best sustainable use of natural resources
- e-cooperative for farmers
 - local multi-national food company

Feale website ?

http://www.rocketmedia.ie/feale/site