MODELLING OF THE INFLUENCE OF WEIRS AND LAND USE ON THE HYDROLOGICAL SYSTEM OF THE LOWER BIEBRZA VALLEY

PLAN OF PRESENTATION

- Description of the research area Aim of the research Model SIMGRO
- Schematization of data
- Modelling scenarios
- Conclusions

BIEBRZA VALLEY

PROBLEMS OCCUR ON

 THE AREA- Lowering of groundwater table
- Succession of scrubs and trees on open meadow territory
- Mineralization of hydrogenic soils

AIM OF THE RESEARCH

Forecasting influences of building weirs and land use changes on groundwater level

MODEL SIMGRO

o Surface zone:

- Land use
- Surface water
o Unsaturated zone:
- Root zone
- Sub soil
o Saturated zone:
- Aquifers
- Aquitards

Schematization of unsaturated zone

Schematization in SIMGRO of the hydrological system within a nodal subdomain by means of an integration of saturated zone and surface water (Quernaer and van Bakel, 1989)

SCHEMATIZATION OF DATA

Topographic map of the modelled area.

126000 ha 7854 nodal points

VERIFICATION

Groundwater level measured in piezometer 9 and calculated in nodal point 4741.

Daily discharges at Burzyn gauge station measured and calculated.

SCENARIOS A - BLOCKING CANALS

Scenario A1 - Four weirs in small canals on Bagno Lawki. Crest of weirs were 0.2 m below ground level

Scenario A2 - Blocking of each small canals on Bagno Lawki, (63 weirs) with crest 0.2 m below ground level

SCENARIOS B - BLOCKING RIVER

SCENARIOS C - CHANGES OF LAND USE

Scenario C1 - "no action" management - deciduous forest would overgrown meadows areas

Scenario C2 - meadow would overgrown deciduous forest area

Wetland birch forest.

SCENARIOS A - BLOCKING CANALS

Average groundwater level changes in summer - differences between scenario A2 and 0

Scenario A2 - Blocking of each small canals on Bagno Lawki, (63 weirs) with crest 0.2 m below ground level

Average groundwater level changes in summer - differences between scenario A1 and 0

Scenario A1 - Four weirs in small canals on Bagno Lawki.

Crest of weirs were 0.2 m below ground level

Changes of groundwater level would occur on 4.6% of the Valley area in Scenario A1 and 37% of the Valley area in Scenrio A2

SCENARIOS B - BLOCKING RIVER

Average groundwater level changes in summer differences between scenario B1 and 0 .

Scenario B1 - two weir in the Biebrza river bed with crest 0.5 m below ground level. Rating curve for weirs is identical to one for the Biebrza river bed.

Changes of groundwater level would occur on $\mathbf{1 0 . 1} \%$ of the Valley area in Scenario B1 and 29.7\% of the Valley area in Scenrio B2

Average groundwater level changes in summer differences between scenario B2 and 0

Scenario B2 - two weir in the Biebrza river bed with crest 0.5 m below ground level. Rating curve for weirs was changed.

SCENARIOS C - CHANGES OF LAND USE

SCENARIOS C - CHANGES OF LAND USE

CONCLUSIONS

In the lower Biebrza most beneficial for soil moisture seemed to be scenario, which assumed building weirs on all small canals on Bagno Ławki.

Modelling proved that land use is a crucial thing and it should be considered before taking on decisions. Mowing meadows on the area sustain unique plant communities and not decrease groundwater level. If "no action" scenario was implemented groundwater level would decrease rapidly.

Results of the modellig might be helpful to choose the best scenario to implement in the area. They might be also used for further analysis of ecological, geographical and economical situation of the area.

THANK YOU FOR ATTENTION

