Project presentation:

Optimised management strategies for the Biosphere reserve Lobau, Austria - based on a multi criteria decision support system

I. Hein ${ }^{1,2}$, A. P. Blaschke 4, G. Haidvogl ${ }^{2}$, S. Hohensinner ${ }^{2}$, V. KuceraHirzinger ${ }^{3}$, S. Muhar ${ }^{2}$, S. Preiner ${ }^{1,2}$, W. Reckendorfer ${ }^{3}$, K. Reiter ${ }^{3}$, B. Schuh ${ }^{5}$, G. Weigelhofer ${ }^{1,3}$, I. Zsuffa ${ }^{6}$

1 Wasserkluster Lunz GmbH, Inter Universitary Center for Water Research
2 Institute of Hydrobiology and Aquatic Ecosystem Management, Department of Water-Athmosphere-Environment, University of Natural Resources and Applied Life Sciences, Vienna.
3 Vienna Ecology Center, University of Vienna.
4 Institute for Hydraulic and Water Ressources Engineering, Technical University of Vienna.
5 ÖIR - Austrian Institute for Regional Studies and Spatial Planning.
$\xrightarrow{\text { TU }}$

6 Water Resources Research Center (VITUKI), Hungary

Background: situation in the Danube River basin

Background: Danube from Vienna to Bratislava

Background: development in the floodplain Lobau

without management - most aquatic and semi-aquatic habitats will disappear
decoupled former dynamic floodplain decrease of aquatic and semiaquatic habitats
still high biodiversity (UNESCO MaB, Natura2000, NP)
disconnected
semi-aquatic
connected
riverine
$11900 \quad 2000$ century

N-

Vision: sustainable \& adaptive management LOBAU

arable farm land meadow \& wood land industry

Interdisciplinary approach

after Poole 2002

Central questions of proposed research

- What are the long-term effects of the human-induced hydrogeomorphic alterations in the Lobau? What motivation drives the alterations in riverine landscapes (risk minimisation and human benefits)?
- To what extent is the current ecological development of the Lobau reversible?
- Which strategies can be applied to combine ecosystem functions with socio-economic services for a sustainable, integrated development in the Lobau?
- Range of management alternatives:
- lentic, back-flooded lake system (present situation)
- highly dynamic, lotic, channel-like system

Project structure

WP1 - Interdisciplinary analyses of preregulation dynamics, landscape features and human interferences

WP2 - Hydrodynamic and groundwater modelling

WP3 - Ecological and socio-economic modelling

WP4 - Aggregation of the DSS using multicriteria decision analysis (MCDA)

WP5 - Project management

WP1 - land use change: data sources \& methods

Data sources:

- historical maps (cadastral surveys, topographic maps etc.) as basis for land use data (identification of different types of land use)
- written archival and published information (forestry/hunting, water management strategies, cadastral surveys, etc.) as basis for socioeconomic status (different types of human uses, management practices and their impact on the natural system in the study area)

Goals and methods:

- Qualitative / descriptive analysis of the ecological and socioeconomic development of the Lobau in the last 200 years
- GIS based analysis of land use and land use change for different points in time in the last 200 years
- (semi-)quantative analysis of the socio-economic system for different points of time by means of different criteria and indicators (identification of criteria and indicators together with WP 3 and 4)
- identification of driving forces and relevant changes for different points in time
\Rightarrow data inquiry (archives) => historical sources
\Rightarrow detailed \& accurate maps 1726-2001
\Rightarrow digital correction with current landmarks

\Rightarrow GIS: vectorization
\Rightarrow Raster GIS: habitat turnover \& site age
methodology: Hohensinner et al. 2004, 2005, in press

WP1 - historical development 1726-2001

WP1 - historical analyses: output

\Rightarrow natural hydromorphological patterns
\Rightarrow spatial habitat turnover
\Rightarrow age of floodplain vegetation sites / habitat age structure historical depth of groundwater table at charact. water levels
\Rightarrow changes in land use patterns

WP2 - simulation surface-ground-water interactions

3 implementation approaches are possible

DAFLOW model routes flows through a system of inter-connected 1D channels and subdivides the system into a series of branches.

HEC-RAS 1D hydraulic model for a full network of natural and constructed channels.

FEFLOW full 3D groundwater model

The models are coupled by adding an exchange between each subreach and specified ground- water cell.

The water exchange for each subreach is computed on the basis of the stream-aquifer head difference, the streambed thickness, stream width, and streambed hydraulic conductivity.

MODFLOW simulates ground-water flow through a three-dimensional grid

Development of the model coupling is needed.

HPP_GMS is a 2D finite element groundwater-model.
G. Blöschl, A.P. Blaschke Technical University of Vienna of cells.

[^0]
Used approach depends on

WP3 - ecological \& socio-economical modelling

-define indicator sets (criteria)
socio-economic drivers
(risk prevention, gaining of settlement area, ...)
-develop predictive submodels (criteria functions)
-interlink submodels
-identification of direct and indirect effects of environmental changes
-input for MCDA 1

WP3 - ecological \& socio-economical modelling

- develop predictive submodels (criteria functions) based on hydrologic gradients

WP3 - ecological \& socio-economical modelling

-define indicator sets
using species traits

WP4 - Decision Support System (DSS)

Deliverables and linkage to other projects

Open questions

-Combination of models

- Use of conditional or physiological models
-Development of more detailed understanding: experimental approach for key processing
-Potential conflicts between nature conservation and ecologic development of the area
- Integration of stakeholders
-Link to other available models and partner projects
proVision - bm:bwk - Federal Ministry for Education, Science and Culture
bm:vit - Federal Ministry of Transport, Innovation and Technology
bm:Ifuw - Federal Ministry of Agriculture, Forestry,
Environment and Water Management
City of Vienna (MA 22, MA 31, MA 45, MA 49)
NP authority „Danube flood plain National Park "

The End

Thank you!

WP3 - example ecological modelling - vegetation

consortium

WP4 - decision support system (DSS)

WP4 - decision support system (DSS)

[^0]: H.E. Jabsen, A.W. Harbough
 U.S. Geological Survey

