Hydrodynamic Simulation of Passive In-Stream Wetland in Rural Areas of Egypt

Dr. Ashraf El Sayed, DRI Researcher Prof. Hussam Fahmy, DRI Director Prof. Shaden Abdel-Gawad, NWRC Chairperson

- Over 95 % desert and arid
- Poor in natural wetland
- Community need for low cost treatment technique
- Engineering wetland an option
 - o Off-stream
 - o Instream

Lack of sanitation facilities in rural area (Cause)

What is the Community do ? (Cause)

Solution: What are the possible alternatives ?

- Do nothing
- Reuse without treatment
- Treatment and reuse of wastewater
 - Conventional techniques
 - Natural techniques
 - Waste Stabilization Ponds
 - Aquaculture System
 - Land Treatment System
 - Engineering Wetland
 - ✤ Surface
 - Subsurface
 - In-stream

Motivation

Treatment		Cost		Treatment	Land	Potential	Applied	
	Technology	initial	Operation	Efficiency	Requirement	Use	technology	
(1	Conventional Freatment	н	н	1.00	1	Limited	н	
Natural Treatment								
	WSP	М	L	0.95	10	Н	L	
	Aquaculture	М-Н	М	0.97	30	Μ	L	
	Land Treatment	L	L	0.92	5	Μ	L	
	Wetland	L	L	0.90	1 -3	Н	L	

Motivation (successful case)

B

- Surface flow beds
- Subsurface flow beds
- Fishery ponds
- Agricultural zone

Disadvantages

Objective

General:

Investigate the potentiality of the in-stream wetland treatment system as the most appropriate natural treatment systems that can be used in rural areas of Egypt

Specific:

Investigate (for different proposed designs):

- the hydraulic performance
- the pollutant removal efficiency

In-Stream Wetland Applicability and Limitation

Select potential sites

Site Selection Criteria

- Drain level (tertiary)
- Physical condition drain cross-section
- Physical Obstacles
- Pollution level and type
 - Medium sewage
 - Absence of toxic industrial waste
- Hydraulic capacity
 - Flow allows for reasonable resident time (population up to 10,000 capita)
- Community Acceptance & appreciation

Community: Acceptance & appreciation

Pilot Area

Pilot Area

- Drain length 1800 m
- Population 3,000 capita
- agricultural served land of 1300 acre
- Drainage water is estimated as 9,200 m³/day

Baseline Studies

- Physical Characteristics
 Drain cross section, bed slop, sources of pollution, land use
- Hydraulic characteristics
 Flow, drain water level, subsurface level
- Quality characteristics Water
 Plant
 Sediment
- Socioeconomic

Design Criteria

- Minimum retention time (> 1 day)
- No short cut flow paths
- Minimum physical interventions and cost
- High removal efficiency
- Raised water level should b lower than the lowest inver of the tile drains by at least 0.25 m

Assumptions

- Typical Manning coefficient n=0.04 used to calculate the shear resistance
- Manning coefficient, n, increased to n=0.06 throughout the specified aquatic plant zones
- Contraction and expansion losses coefficients adopted (i.e. K= 0.1 for contraction losses and K=0.3 for expansion losses)

SIMULATION TOOLS

HEC-RAS Package

 integrated system of software developed by US-Army Corps of Engineers designed for interactive use in a multi-task environment

MATLAB Package

 interactive software system for numerical computations designed for matrix computations

Design Scenarios 25 numerical runs

Design Scenarios

- Set 1: Without aquatic plant (runs 1 to 3)
- Set 2: With weir or baffles (runs 4 to 10)
 - with sedimentation trap zone and one weir
- Set 3: With aquatic plant (runs 11 and 12)
- Set 4: Typical PIW (runs 13 to 22)
- Set 5: Variable discharges
 - runs 23 to 25 is similar to set 4 with different discharge flux

List of numerical runs and calculated detention time

Run	Q%	Depression	Weirs height (cm)		Baffles height (cm)		Vegetation		Time
			Α	D	B	C	A→B	C→D	(nr)
1	100%	No							
2	100%	No							9.29
3	100%	yes							12.92
4	100%	yes	30						14.46
5	100%	yes	50						24.43
6	100%	yes		30					14.66
7	100%	yes		50					30.8
8	100%	yes		75					66.55
9	100%	yes	50	50					35.11
10	100%	yes	50	50	25	25			35.11
11	100%	yes	50	50	25	25	n=.06		35.11
12	100%	yes	50	50	25	25	n=.06	n=.06	35.54
13	100%	ves	50	50	25	25	n=.03, t=5 cm		33.78

List of numerical runs and calculated detention time

Run	Q%	Depression	Weirs height (cm)		Baffles height (cm)		Vegetation		Time
			Α	D	B	C	A→B	C→D	(111)
14	100%	yes	50	50	25	25	n=.03, t=5 cm	n=.03, t=5 cm	34.06
15	100%	yes	50	50	25	25	n=.02, t=5 cm	n=.02, t=5 cm	33.85
24	150%	yes	50	50	25	25	n=.02, t=10 cm	n=.02, t=10 cm	24.35
25	50%	yes	50	50	25	25	n=.02, t=10 cm	n=.02, t=10 cm	68.66

Vegetation response to detention time

Effect of discharge variation on detention time

Major Findings

- The end weir plays the most important role in controlling the detention time throughout the PIW
- Interior baffles do not have significant effect on the produced detention time
- Aquatic floating plants have small effect on the produced detention time
- Discharge variation has a nonlinear response to detention time
 - For example, an increase of 50% in Q will cause the detention time to decrease by 36% whereas a decrease in Q by 50% causes the detention time to increase by 91%

BOD spatial decay along the drain pilot

FC spatial decay along the drain pilot

Pilot Area Drain Design

- Reformation of Drain Bed Profile
- Planting of Aquatic Plants
- End Weir
- Detention Time

Profile of the drain pilot reformation

Conclusions

- The end weir plays important role in controlling the detention time throughout the PIW channel system
- The in-stream wetland with 36 hours detention time can reach up to 70% removal efficiency
- The discharge variation has a nonlinear response to the detention time
- The optimum case is to serve 5,000 to 10,000 capita