Alternative management options for degraded fens – use of biomass from rewetted peatlands

Wendelin Wichtmann

Institute for sustainable use of landscapes Greifswald

Institut für dauerhaft umweltgerechte Nutzung von Naturräumen der Erde e.V. (DUENE) c/o Botanisches Institut, Grimmer Strasse 88, 17487 Greifswald

Content

- actual situation and possible development
- some functional aspects
- assessment of alternatives
- examples for biomass use
- potentials for energetical use in N-Germany
- conclusions

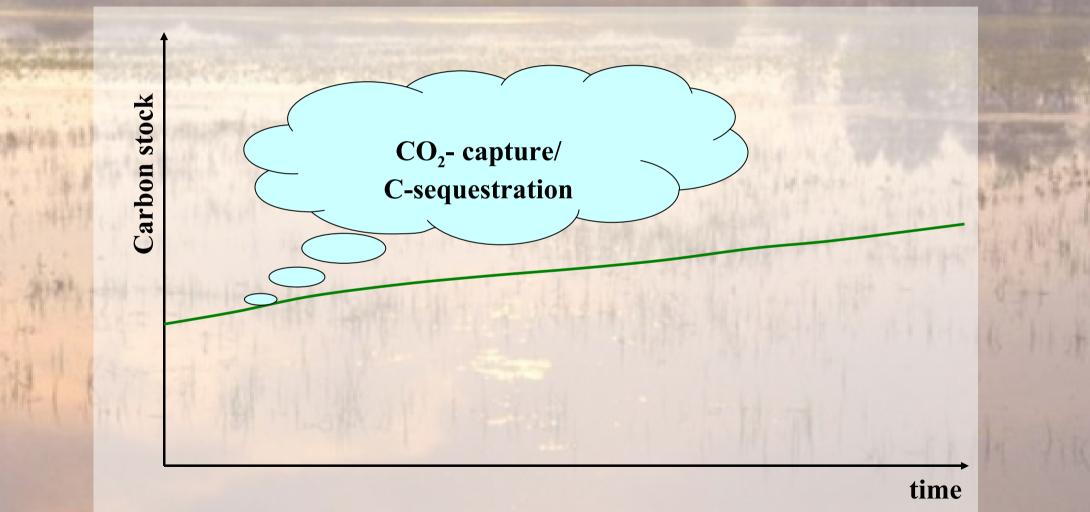
The actual situation

- Main interests on fen peatlands:
- Nature conservation
- Agriculture on peatlands
 - is connected with burdening of environment and costs
 - is only efficient because of subsidies
- Subsidies promote not adapted land use
- Users do not have incentives to look for site adapted land use alternatives for peatlands

Possible development of degraded fen peatlands

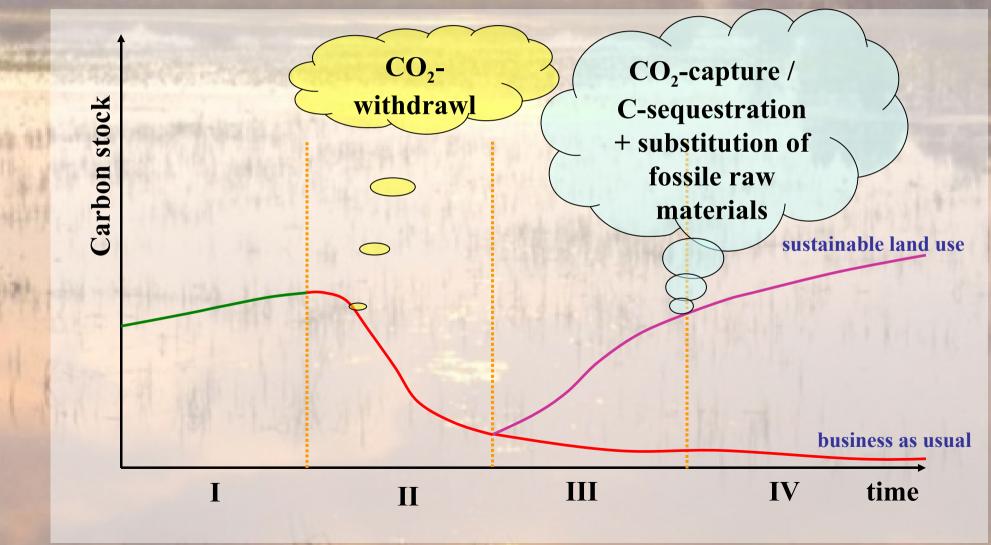
- Cultural landscapes
 - intensive: peat excavation, arable land, grassland
 problem: very high environmental impact
 - low intensive: ecological farming, maintainance of landscapes, nature protection problem: still environmental burdens, biomass use (still) not efficient
 - alternative: environmentally adapted production under semi-aquatic conditions problem: efficiency and political acceptance

Natural landscape without any use

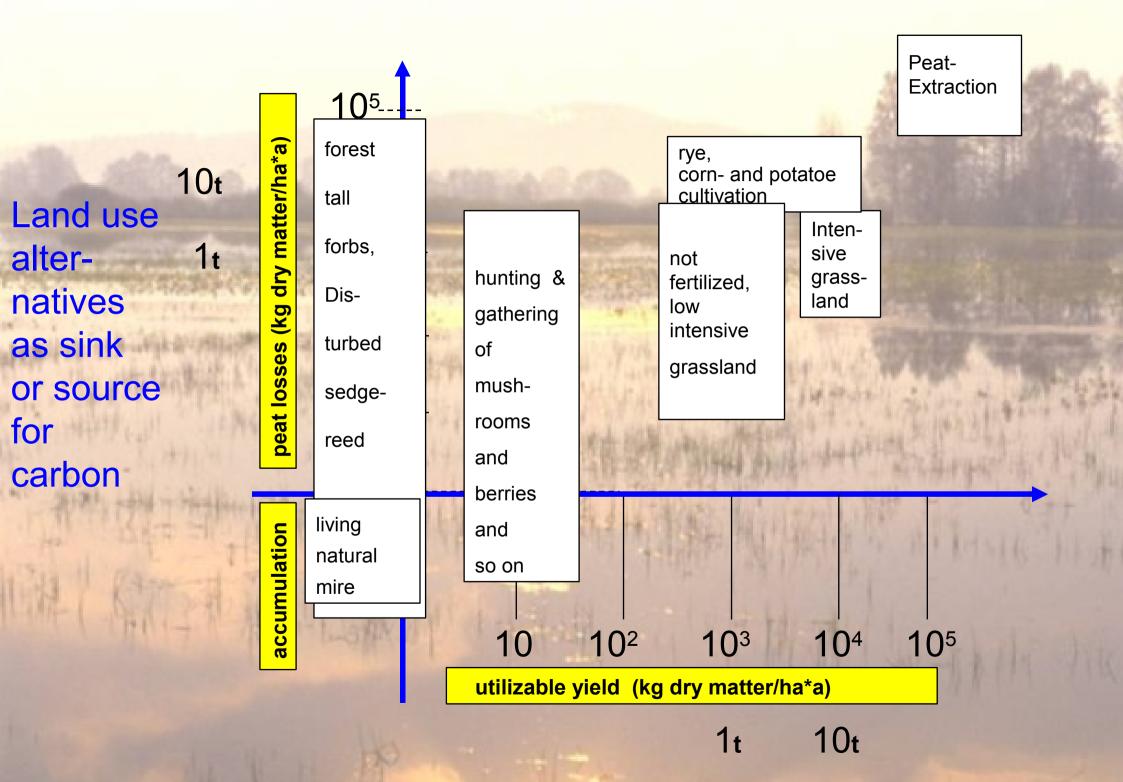

- free succession without rebuilding of amelioration or
- restoration inclusive removing of amelioration installations
 problem: land use options must be bought from the farmers
 financing in times of low budgets is not sure
 what will EC-future bring....?

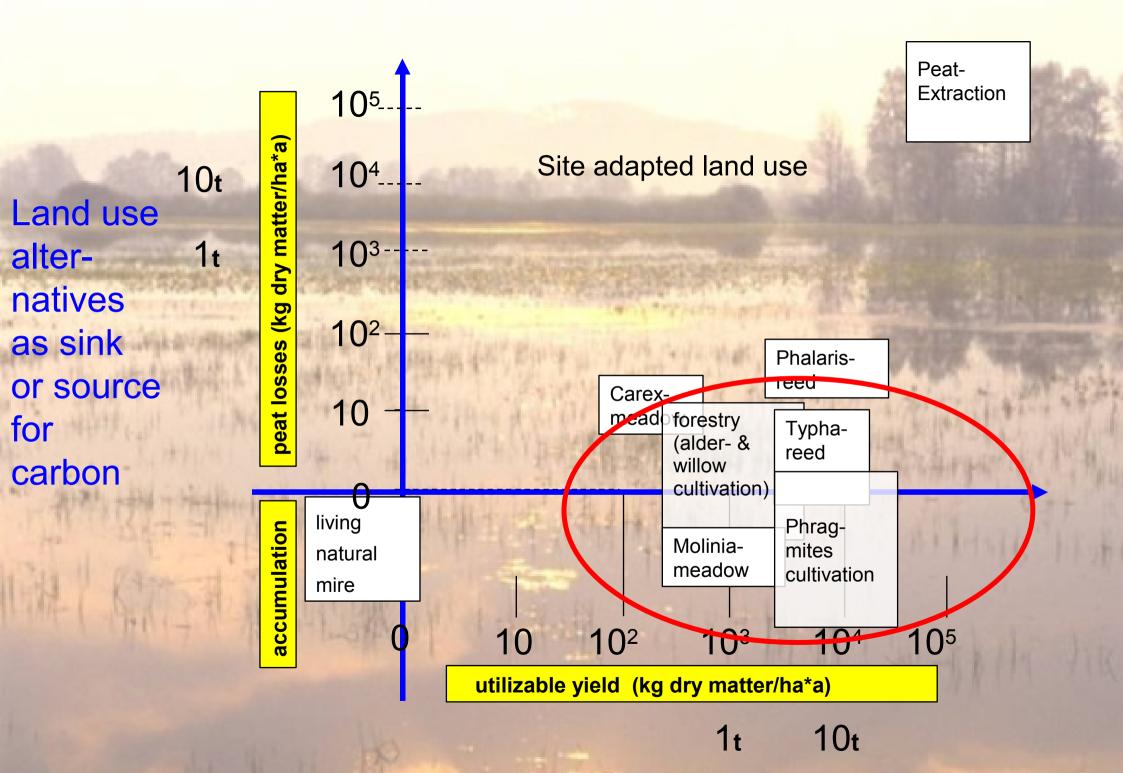
Reasons for keeping peatlands in cultivation

function


sink	Deposition and recycling of nutrients,			
disposal	carbon sequestration			
regulation	keeping cultural landscapes open,			
	site and culture specific biodiversity			
The transmithe The	ground water retention			
conservation/	regional responsibility for plant communities			
preservation	key species			
production	fodder, comestible goods, biomass, raw materials			
transformation and option	later intensification possible			
information	landscape beauty, recreation, esthetics and cognition, research			

Natural mires as C-sink




after Schäfer 2005

Carbon ecology in peatland use

after Schäfer 2005

goals

- 1. Assessment of alternatives for site adapted land use
- Restoration of the sink function of peatlands, e.g. for carbon and nitrate
- 3. Give space for mire key species
- 1. Development of new land use concepts with minimal harms to environment

Assessment of alternatives for peatlands

Effects on	halfopen pastures	fallow/sucsession	afforestation (pine)	
productivity	+-	-	+-	
waterretention	+-	+-	-	
conservation aspects	+	-	_	
environmental aspects	+	+-		

Low intensity:

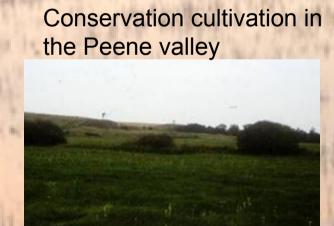
Pasture under wet conditions Trebel valley

Assessment of alternatives for peatlands

intensive:

Pasture of intensive grassland, Welse valley

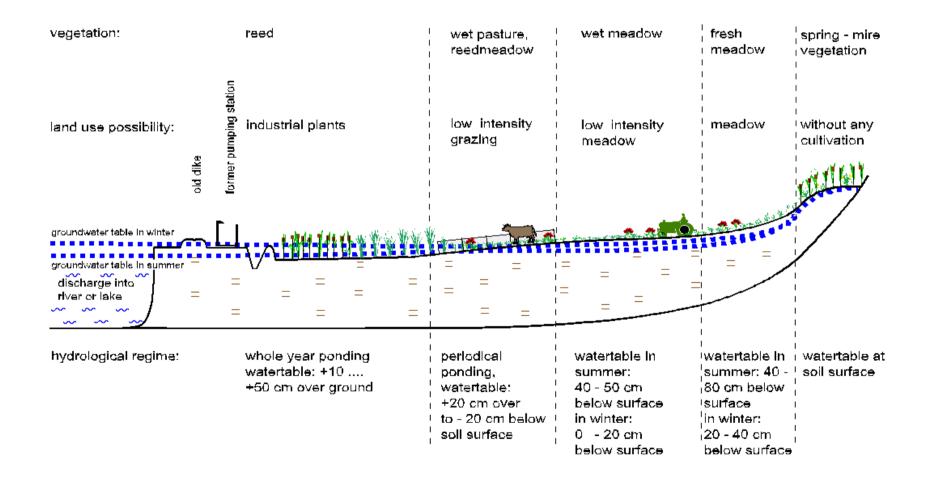
alternative:


planted cattail, 2nd year

natural elder stand

Planted reed stand, 2nd year

		and the second se		
Effects on	Intensive land use	Low intensity	Alternative land use	
productivity	++	+-	++	
waterretention	+-	+-	++	
conservation aspects		+	+-	
environm. aspects		+-	++	



natural Phragmites reed stands in the Peene-river valley

Stability of new ecosystems?

The restored Trebel-river lowland

How may a sustainable used fen peatland look like?

Alternative land use on fen peatlands

Examples for utilization of biomass from wet fen-peatlands

	demand for quality: + = high, 0 = medium, - = low						
U	Utilization		vegetation	harvest	quality		
atio	agricultural	mowing, fodder	wet meadows, reeds	early summer	+		
erv	and the second second	grazing	wet meadows, reeds	whole year			
cons	And the state of the second state	litter	(Carex)- meadows, reeds	summer			
-	1. 1. 1920 H Martin	compost	wet meadows, reeds	late summer	-		
ture	as an article and	nellets	wet meadows reeds	early summer	C. PROPERTY OF		

+

wetlandtrucks

Alternative use of peatlands in Poland, nearby Wolin (Foto: M. Succow, August 2005)

Reed store in Poland (Foto: M. Succow, August 2005)

Examples for the industrial use of biomass

formbody made of cattail

Sandwich plates from cattail

Furniture from elder

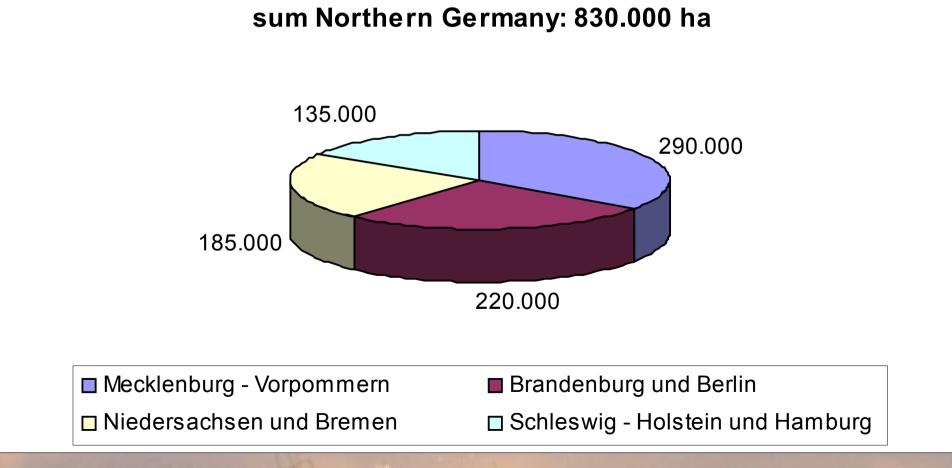
formbodies (II): Grids for prevention from erosion and "Gesteckträger"

Insulation material

formbodies (III): plant-pot and nest for swallows

Examples for the energetical use of biomass from peatlands – direct combustion

Biomass fired cogeneration facility in Demmin, M.-V.



oven for direct burning of round bales in Sweden (for heating)

Potential area for Northern Germany

 More than 10 % of the agricultural area are fen peatlands

Scenario for fen peatlands in Northern Germany (830.000 ha) ?

One half (415.000 ha) business as usual (grassland) (not rewettable sites)

One half (415.000 ha) will be rewetted

50 % of these ~200.000 ha nature conservation in parts with inundation the whole year in parts in low intensity with small biomass amounts

The other 50 % of the rewetted peatlands

~200.000 ha → high effective biomass production on hypertrophic peatlands under wet conditions

Energetic use

Assumption: harvestable biomass (reed, cattail or reed canary grass: winter harvesting) average 10 t DM/ha x a necessary for capacity of 1 MW: 5.000 t DM/a → demand for 20 MW power plant 100.000 t/a \rightarrow 10.000 to 30.000 hectar for one power facility Northern Germany: 7 to 20 power facilities with 20 MW-capacity

basic data a after Thrän und Kaltschmitt 2001

How many money is needed

evaluation of costs

 direct calculation of economic conditions
 gross-margin, full cost analysis
 asking farmers how many they need

efficiency of biomassproduction for energy use

Assumptions, data changed after Reinhold 2001, Schäfer 1999, Kraut et al. 1996 and Lenk 2002

1111	Latte alle	D.600	canary grass, sedges, glyceria maxima, wet meadows	reed, canary grass	quality- reed (cattail)	
	Harvest time	Unine stands	summer	winter	winter	
8	Kind of biomass vield	t (DM)	green mass 5	dry biomass 8	dry bomass 20	
s,	Big bales	à 250 kg	20	32	80	
p.	行命, 住地山的大部门的制作, 如果, 田安市	Property for	Block of Mile Section	Add Land and the se		
	costs	We the life is	To serve and the	P. M. HARRIS	10 1 (MA)	
5	Fix and variable costs	Euro/ha	210	250	450	
	(harvesting)	A Shark a	(1);注意推动的资源。他们	A March and a print	La martine	
	transport/storage (3,2 €/t)	Euro/ha	16	25	63	
	handling/delivery (12,5 €/t)	Euro/ha	63	100	250	
	grassland subsidies	Euro/ha	204	Million	at the sale of	
	sum of costs	Euro/ha	85 (289)	375	763	
AT	costs per ton	Euro/t	17 (58)	47	38	
	minimum yield (+ 30%)	Euro/bale	6 (19)	13	12	1

Actual price for biomass for energetical use: 40€/t

Costs of management of peatlands in comparison with other land use concepts in nature conservation

method	deficiency €/ha	author
sheep	530	Tampe & Hampicke 1995
	160 370	Schlauderer & Prochnow 2003
meadow	200 550	Roth & Berger 1999, Hampicke & Roth, 2000
afforestation	·····································	of the participation of the second
pine…beech	210 450	Hampicke 2001
removal of scrubs (2-20J)	140 400	state of the state
burning (2-10J)	4 71	Schlauderer & Prochnow 2003
wild animals in half open landscapes	129	
Heck-cattle	150 255	Rühs 2004
altern. use energy	0 250	
of peatlands : raw mat.	- 41 415	Wichtmann & Schäfer 2005
elder-production	- 28 153	

Where may the needed money come from?

- financing
 payment for biomass and for ecol./environm. services
 - CO₂-sequestration
 - Use of biomass from wet peatlands is one of the cheapest options for CO₂-reduction
 - CO₂-permission certificates 20 €/t (emission permissions):
 - » elder production → 600 €/ha
 - connect eco-taxes with payments for carbon sequestration
 - regular EC-payments also for wetlands
 - EC-agro-environmental programmes (modulation)
 →wetlands must be included in the agricultural used area

Conclusions I

Importance of use potentials of fen peatlands

- Raw materials for agriculture: litter, humus, fodder
 - → will decrease
- Nature conservation
 - \rightarrow will increase
- Raw materials for energetical and industrial use
 - \rightarrow will increase

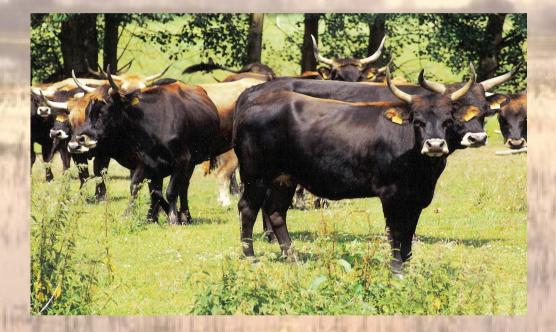
Sustainable land use on rewetted fen peatlands is

- possible, if enough water is available
 - an immediatly valid method for climate protection
 - **positive** for the protection of biodiversity, landscape and

Waters (not with the beginning)

- economic for the farmer
- a cheap option for climate protection for the society

Conclusions II


There are enough concepts for sustainable land use on wet peatlands
There is enough demand for

nutient reduction
flood control
bidiversity maintainance
CO₂-reduction

Challange: bring concepts and demands togeteher!

Conclusions III: How to get nature with a high degree of diversity

- Removal of amelioration-installations linked with free succession (high starting investment)
 - Nature conservation by preservation for the maintainance of species rich ecosystems (high permanent investments necessary)
 - → the only option for creation and maintainance of sites with scarce plant and animal species
 - Rewetting with growing of industrial or energy plants in semi-aquatic ecosystems (neutral to investment)
 - Iarge scaled realisation will lead to a mosaic with high degree of biodiversity

Thank you for listening

Land use changes in Europe as a challenge for restoration ecological, economical and ethical dimensions

5th European Conference On Ecological Restoration

22.-25. August 2006 Greifswald, Germany

What you can make else from biomass

The "Ra" of Thor Heyerdahl

Andreas Tschernoch: "The year of the butterfly, (reed/steel)

Cultural land arable farming, intensive (artificial) cut swards, settlements, peat cutting ⊠extensive grassland, ecological farming **⊠**nature conservation ⊠industrial plants in semiaquatic ecosystems Natural landscapes free succession without rebuilding of amelioration **⊠**renaturation inclusive removing of amelioration installations restoration of the whole catchment area

Conclusions

-If a fen valley peatland shall be treated more sustainable, one cannot decide for one option of landuse.

-Nutrient and water conditions vary and corresponding to that land use has to conform to these properties.

Costs have to be avoided and highest possible degree of diversity has to be aimed at. Because fodder quality generally decreases with the heighth of the water table and other applications in agriculture are not financable only industrial and energetical utilization of biomass out of fens seem to be suggestive.

Entwicklung des Viehbesatzes und der Milchproduktion in Mecklenburg Vorpommern

Tierart	Unit	Animals per 100 ha agr.			changes 2001 in %		
		1991	2000 ₃₎	2001 ₃₎	ict 2000	ict 1991	
cattle	head	56	44	44	0	-21	
COWS	head	19	14	14	0 (-26	
pigs	head	89	47	47	0	-47	

1) 1992; 2) einschl. Pferde und Geflügel 1992; 3) Zählung 03. Mai; 4) 1999; 5) einschl. Pferde und Geflügel 1999; 6) einschl. Geflügel;

Quelle: Statistisches Landesamt.

Kennzahl	1991	2000	2001	Veränd. 2001 in %	
				zu 2000	zu 1991
Milchleistung je Kuh u. Jahr (kg)	4.275	7.002	7.143	+2	+67
Milcherzeugung (kt)	1.258	1.350	1.338	-1	+6

Quelle: Statistisches Landesamt.

expected advantages of reed cultivation:

keeping full working capacity in rural areas during winter time

 avoidance of nitrous oxides and carbon dioxide emissions as products of mineralization of the drained peat body

 accumulation of carbon dioxide in the harvested biomass and in the developing peat

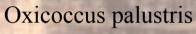
filter effect for dissolved solutes in surface waters by the peat and the biomass
purification effect by the use of reed sites as third purification step for sewage treatment

 utilization of nutrients available in the sewage saving of unnecessary mineral fertilizers and plant protecting agents,

 creation of water retention areas with high evaporation potential creation of stable wetlands as habitat for specialized, endangered species

Target species (mire plants)

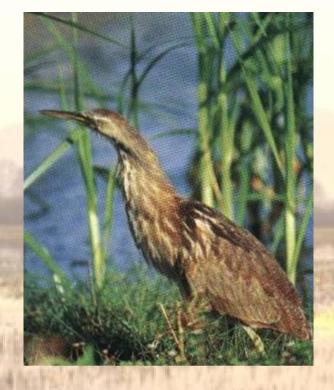
Drosera rotundifolia



Ledum palustre

Eriophorum angustifolium

Moosbee


mmerman

Sphagnum spec.

Target species (animals)

Bataurus stellaris

Lutra lutra

Aquila pomarina