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CRITERIA FOR THE CHOICE OF FLOOD ROUTING METHODS IN 
NATURAL CHANNELS WITH OVERBANK FLOWS  

Roger Moussa1 

Abstract:  The classification of river waves as gravity, diffusion, or kinematic 
waves, corresponds to different forms of the momentum equation in the Saint-
Venant system. For a given river wave, the choice of a numerical method of 
resolution, space and time steps to be retained, depend essentially on the 
form of flood hydrographs and the hydraulic properties of the river. This paper 
is an investigation into these areas for flood routing in natural channels with 
overbank flow that generally occur in wetland areas. Two sets of criteria are 
proposed, first to define parameter ranges representing each wave type, then, 
in the particular case of the diffusive and kinematic wave models, to define 
criteria for the choice of numerical algorithm and adequate space and time 
steps. The first step was an analysis of the different terms in the Saint-Venant 
equations as function of the balance between friction and inertia. The second 
part discussed questions related to the diffusive and kinematic wave models 
and to numerical instabilities. The technique was applied to flood routing 
simulation on the Loire river in France. Comparisons between results show 
the efficiency of the technique to analyse the Saint-Venant equations for 
routing with overbank flow.  

Keywords :  Flood routing, Overbank, Saint-Venant equations, Diffusive wave 

INTRODUCTION  
Many hydraulic and hydrologic problems involve the computation of the 
propagation of flood waves in open channels based on the solution of the well-
known Saint-Venant (1871) equations. The Saint-Venant equations are coupled 
hyperbolic partial differential equations that cannot be solved analytically. Various  
numerical schemes have been proposed to resolve these equations including the 
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method of characteristics, a variety of sophisticated finite difference methods 
(Remson & Hornberger, 1971; Dooge et al., 1982, Moussa & Bocquillon, 1996b, 
2001) and finite element schemes (Szymkiewicz, 1991). Comparisons of numerical 
solutions for the Saint-Venant equations have been published by Greco & 
Panattoni (1977). The complexity inherent in the calculations has led to the 
development of approximate methods. Several authors have examined the 
approximation zone of the Saint-Venant equation in the particular case of one main 
channel river (Ponce & Simons, 1977; Daluz Vieira, 1983; Napiorkowski, 1992; 
Moussa & Bocquillon, 1996a). Within this basic model, river waves may be 
classified as gravity, diffusion, or kinematic waves, corresponding to different forms 
of the momentum equation.  

However, the major parts of research in this field have studied the case of a 
channel with one section corresponding to the main channel, and little attention 
was given to overbank flow during flood events. The cross section of a channel 
may be composed of several distinct subsections with each subsection different in 
roughness from the others. For example, an alluvial channel subject to seasonal 
floods generally consists of a main channel and two side channels.  

The object of this paper is to develop a quantitative method for identifying river 
wave types in the case of flood events with overbank flow. The analysis presented 
herein endeavours to apply the theory of linear stability to the set of the Saint-
Venant equations in a non-dimensionalise space as proposed by Moussa and 
Bocquillon (1996a, 2000), then, in the particular case of the diffusive wave 
equation, to guide the user in the choice of finite difference algorithm and to specify 
the error introduced by the retained computation algorithm. 

THE SAINT-VENANT EQUATIONS FOR CHANNELS OF COMPOUND 
SECTION  
The dynamic modelling of a one-dimensional gradually varied unsteady flow in 
open channels is based on the numerical solution of the Saint-Venant equations. In 
the case of a river with a flooded area, let W1 and W2 be respectively the width of 
the main channel and the flooded area zone respectively (Fig. 1). The two 
equations, describing mass and momentum, can be written as follows   
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where y is the flow depth (m), V is the flow velocity (ms-1), g is the acceleration due 
to gravity (ms-2), S is the river bed slope, Sf the slope of energy line, Q the 
discharge (m3s-1), x is longitudinal distance (m) and t is time (s). The basic 
assumption to derive this system is that the flow is one-dimensional in the main 
channel and the flooded area, and that there are no lateral inflows or outflows. 
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Figure 1. A channel consisting of one main section and two side sections with lateral inflow 
or outflow.  

The side channels are usually found to be rougher than the main channel. So the 
mean velocity V in the main channel is greater than the mean velocities in the side 
channels. In such a case, the Manning formula may be applied separately to each 
subsection in determining the mean velocity of the subsection. Then, the 
discharges in the subsections can be computed. The total discharge is, therefore,  
equal to the sum of these discharges. As the velocity in the main channel is greater 
than the velocity in the flooded area, the part of discharge in the flooded area 
subsection is small in comparison to the discharge in the main channel. Let η be 
the ratio between the flooded area zone width and the main channel width 
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The two equations (1) and (2) of the Saint-Venant system can be written as follows 
(Moussa and Bocquillon, 2000) 
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The term Sf is usually calculated using the Manning formula. As the velocity V in 

the main channel is greater than the velocity in the flooded area, the term of the 
Manning formula applied to the flooded area is small in comparison to the term in 
the main channel 

    m2
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where V is the mean velocity (ms-1), R the hydraulic radius (m), n the coefficient of 

roughness and m a constant ( m ≈ 4
3 ). For the main channel 
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The two equations (4) and (5) give the generalised form of the Saint-Venant 
system with a flooded area and where the side channels are rougher than the main 
channel. In this case, the Saint-Venant system depends on the parameter η  that 
appears in the mass equation.  

ANALYSIS OF RIVER WAVE TYPE   
The analysis presented herein endeavours to apply the theory of linear stability to 
the set of equations governing the motion in open channel flow as proposed by 
Ponce & Simons (1977) and Napiorkowski (1992) and then to define parameter 
ranges representing each wave type in the Saint-Venant system for different 
values of η. The analysis is based on the principle that the balance between friction 
and inertia determines river wave behaviour.  

The Saint-Venant equations are written in dimensionless form. The system 
equation provides parameters that quantify the magnitudes of all terms in the 
equation and indicate the relative importance of friction and inertia. Moussa & 
Bocquillon (1996a, 2000) showed that the Saint-Venant system can be expressed 
function of three non-dimensionalised terms : 

- The Froude number F
V
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flow.  
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slope of energy line of the unperturbed steady uniform flow and T the wave 
period (s). 

- The ratio between the flooded area and the main channel widths η. 

The three terms of the mass equation (4) are generally of the same order and no 
simplifications could be made. In opposite, and for many cases, different terms of 
the momentum equation (5) may be sufficiently small to be neglected, leading to 
further simplifications. In equation (5), the term (IV) represents the local inertia 
term, the term (V) represents the convective inertia term, the term (VI) represents 
the pressure differential term, and the terms (VII) and (VIII) accounts for the friction 
and bed slopes. Various wave models can be construed, depending on which of 
these four terms is assumed negligible when comparing with the remaining terms. 
Wave models and terms used to describe it are : 

 - Gravity wave : terms (IV) + (V) + (VI) 

 - Diffusive wave : terms (VI) and (VII) 

 - Kinematic wave : term (VII) 
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Fig. 2 shows the approximation zones of the Saint-Venant equations obtained by 
neglecting the terms of equation (5) representing less than 10 % of the sum of  
absolute values of all terms of this equation. Two cases are analysed, the first 
corresponds to the case without overbank flow (η = 1; Fig. 2a) and the second to 
the case with overbank flow (e.g. η = 20; Fig. 2b). The results obtained for η = 1 
are of the same order and confirm other results obtained by several researchers, 
notably Daluz Vieira (1983), that developed criteria for deciding the conditions 
under which approximate models provide an acceptable representation of the 
momentum equation in the Saint-Venant system. When η increases, the domain of 
application of  the gravity wave increase while the domain of application of the 
diffusive wave and the kinematic wave models is restricted and substituted by the 
full Saint-Venant system. The comparison of the diffusive wave domain of 
application for the two cases of η in Fig. 2, shows that the domain  moves to the 
right (higher values of T+) when η increases and substitute for the kinematic wave 

zone. 

 

 

                    a.                                                                     b. 

Figure 2. River wave approximation zones obtained from the analysis of the momentum 
equation of the Saint-Venant system for two values of η =1 (a) and 20 (b). 

Other considerations such as the computational power available or the need for 
real-time forecasting may also be important in the choice of technique. Practical 
experience suggests that the simpler diffusive wave, kinematic wave or linear 
methods will be adequate for many purposes. They will not, however, be suitable in 
flood routing modeling when η increases or varies in space (on the river channel) 
or in time (during a flood event). In this case, the diffusive wave model should 
substitute for the kinematic wave model and the full Saint-Venant system should 
substitute for the diffusive wave model. 
In choosing a routing method the accuracy and availability of channel cross-section 
and roughness coefficients may have a greater effect on the predictive accuracy of 
a routing algorithm than the choice of the descriptive equation. In addition, both 
cross-sectional and reach scale roughness may be expected to vary with 
discharge, especially at the transition overbank flow. Estimating roughness 
coefficients is a particularly difficult problem for natural channels. In fact, all routing 
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methods will need to be calibrated to a particular site by comparing observed and 
predicted levels or discharges, where they are available. In general, the more 
complex the model, the more physical characteristics and model parameters that 
must be estimated or measured in the field. In this respect, the simpler routing 
methods with fewer parameters may have some advantages. 

THE DIFFUSIVE WAVE MODEL   
In most practical applications, the acceleration terms in the momentum balance of 
the Saint-Venant equations can be neglected since they are small in comparison to 
the channel bed slope. We obtain the diffusive wave equation 
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where x (m) is downstream distance, t (s) time, C (ms-1) and D (m2s-1) are non-
linear functions of the discharge Q(x,t) (m3s-1) and are generally known as celerity 
and diffusivity, respectively. The kinematic wave model corresponds to the 
particular case when D=0. The term q(x,t) (m2s-1) represents the lateral inflow 
distribution (lateral inflow if q>0, and lateral outflow if q<0). Let Q ta ( )  (m3s-1) be the 
total lateral inflow/outflow hydrograph. 

    ∫=
L

0
a dx).t,x(q)t(Q     (9) 

The diffusive wave approximation, like the full Saint-Venant system, requires 
specification of both upstream and downstream boundary conditions, as well as 
patterns of lateral inflows. It can be used to model both the attenuation of the flood 
wave peak downstream and backwater effects resulting from obstructions to the 
flow and the confluence of different branches of the network (Dooge et al. 1982). In 
practice, attenuation and dispersion of the flood wave may be masked by 
significant lateral inflow. 

For a river reach without lateral inflow or outflow, the diffusive wave has an 
analytical solution : The Hayami model (1951) 
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for 0 ≤ ≤x L  

Let I(t) and O(t) be respectively the upstream inflow minus the baseflow and the 
downstream outflow minus the baseflow, we have 

I t Q t Q( ) ( , ) ( , )= −0 0 0   O t Q L t Q L( ) ( , ) ( , )= − 0             (11) 

and let K(t) be the Hayami kernel function defined as 
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Substituting (11), (12) and (13) into (10) gives the convolution relation 
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In the particular case where lateral flow is uniformly distributed along the river 
reach, Moussa (1996) showed that the diffusive wave model has an analytical 
solution 
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The analytical solution is unconditionally stable, requires only an upstream 
boundary condition, which makes it very convenient to implement for networks of 
channel reaches and has the benefit of ending as a very simple computer program 
(Moussa, 1997). However when the parameters C and D are function of Q, 
numerical methods are required to resolve the diffusive wave equation (Moussa & 
Bocquillon, 1996b, 2001). When using numerical solution, one encounters the 
questions of construction of finite-difference systems, methods for solving them, 
their stability and their accuracy. The choice of an algorithm, time and space steps 
to be retained, depend on many factor : the form of upstream flood hydrograph, the 
hydraulic properties of river reaches and the recording time step. Moussa and 
Bocquillon (1996a) proposed a methodology to optimise the choice of time and 
space steps of finite difference methods in order to avoid instabilities and to reduce 
the time of calculation. 

APPLICATION CASE   
The River Loire in France between Grangent and Feurs (L = 43 km) was used as 
application case. The lateral subcatchment (area 865 km²) is equipped with two 
stream recorders that give upstream inflow at Grangent (catchment area 4113 km²) 
and downstream outflow at Feurs (catchment area 4978 km²), the mean annual 
discharge at Feurs being 41.4 m3s-1. The river elevation ranges from 373 m above 
sea level at Grangent to 325 m above sea level at Feurs. The mean width of the 
river is W1=130m, the mean width of the flooded area W2=200m to 1000 m and the 
mean slope of the river bed slope is S=0.1 %. By comparing the relations flow 
depth / discharge at the two control sections (approximately 3.4 m and 5.8 m flow 
depths for discharges of 500 m3s-1 and 1200 m3s-1respectively), a mean velocity 
was estimated; the calculated values range between 1.1 ms-1 and 1.4 ms-1 during 
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flood events. Six inflow/outflow hydrographs measured by EPALA (Etablissement 
Public d'Aménagements de la Loire et ses Affluents) where lateral inflow could be 
neglected were considered between 1976 and 1984. The time step is two hours. 
For all flood events, the maximum peak of outflow is inferior to the maximum peak 
of inflow reflecting the presence of diffusivity. The aim is to propose a methodology 
to guide the user in the choice of a flood routing model that simulates outflow at 
Feurs using as inputs measured inflow at Grangent and then to choose numerical 
algorithm and space and time steps that minimise errors criteria defined by the 
user. 

The analysis of inflow hydrographs shapes was done by adjusting a sinusoidal 
function. Then the problem was analysed in the Saint-Venant approximation zone 
diagram (Fig. 2) by calculating the Froude number and the wave characteristics of 
each flood event. For the six flood events, the Froude number ranges in the interval 

003 0120
2. .≤ ≤F  and the nondimensionalized period in the interval 10 45≤ ≤+T . The 

parameter η ranges between 1 and 8. This corresponds to the diffusive wave zone.  

The methodology proposed to analyse the diffusive wave routing problem is 
divided into two steps. The first step was to estimate, for each set of input-output 
hydrographs the two parameters C and D of the diffusive wave equation (8) by 
analysing inflow-outflow hydrographs and geometric characteristics of the river 
under the hypothesis of constant values of C and D. The second step was to 
optimise the choice of the numerical algorithm and the choice of space and time 
steps that minimise numerical errors. For this the analytical solution (Eq. 15) was 
compared to the solution obtained with numerical methods suggested by Moussa & 
Bocquillon (1996b). Two problems were studied: For a given algorithm and for a 
given space and time steps, what is the numerical error induced? What algorithm 
and what space and time steps should be used to obtain a numerical error less 
then a threshold defined by the user? 

Figure 3. Comparison between measured and calculated hydrographs for a flood event on 
the Loire river between Grangent and Feurs. 
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For the application case, the identified parameters C and D for the six flood events 
ranges for the celerity in the interval s/m8.2Cs/m3.1 ≤≤  and for the diffusivity 

in the interval s/²m13200Ds/²m1500 ≤≤ . The algorithm that reduces the 
calculation time and numerical instabilities was the Crank-Nicholson scheme with 
∆x = 7166 m and ∆t = 1440 s. Fig. 3 shows a comparison between observed 
discharge and simulated discharge for one of the six flood events on the Loire river 
using the adjusted parameters of the diffusive wave equation with overbankflow. 

CONCLUSION  
The Saint-Venant system, formed by combining the continuity and momentum 
equations, is controlled by the balance between friction and inertia. The case of 
compound channel section is studied for flood routing problems in natural channels 
with overbank flow in the flooded area. The propagation characteristics of shallow 
water waves in open channel flow are calculated on the basis of linear stability 
theory. Two dimensionless parameters, the Froude number and the period of the 
input hydrograph enable to define a spectrum of river waves, with continuous 
transitions between wave types. Gravity, diffusion, and kinematic waves 
correspond to specific scaling parameter ranges of this spectrum. The parameter 
range corresponding to each wave type was studied as a function of the flooded 
area width. Results show that, when the width of the flooded area increases, the 
domain of application of  the diffusive wave and the kinematic wave models is 
restricted. 

Then, in the particular case of the diffusive wave model, a methodology is 
proposed to guide the user in the choice of numerical algorithm and the adequate 
space and time steps. This methodology, based upon an analysis of inflow/outflow 
hydrographs, enables the user to estimate error induced by the numerical algorithm 
and to optimise space and time steps that minimise criteria errors and computer 
time. This technique was applied for the Crank-Nicholson algorithm on the Loire 
river as demonstration case. However, the same methodology could be used with 
other algorithms needing other set of parameters. 
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