





Prof. dr. ir. Ronny Verhoeven
Hydraulics Laboratory
Ghent University
Belgium

# Hydraulic Modelling of wetland flow

- Introduction
- Hydraulic modelling of open channel flow
- Extension to wetlands
- Data collection problems, questions, solutions
- Input data problems, questions, solutions
- Conclusions questions

### Introduction

Engineer >> translates reality into formula



Deterministic approach is what he likes:  $p = \rho g h$ 

Stochastic representation is what he needs to live with





# Hydraulic Modelling of open Channel Flow

**Steady state** 

### Continuity:

 $O = A \cup U$ 

Motion – Bresse equation:

$$\frac{\delta h}{\delta x} = \frac{So - Sf}{\sqrt{1 - So^2} - \frac{BQ^2}{gA^3}}$$

Uniform flow
>> Manning <<</pre>

 $U = 1/n.R^{2/3}.S_0^{1/2}$ 



**Unsteady state** 

### Saint Venant equations

Continuity: 
$$\frac{\delta Q}{\delta x} + B \frac{\delta h}{\delta t} = 0$$

$$\frac{\delta Q}{\delta t} + \frac{\delta}{\delta x} \left( \frac{Q^2}{A} \right) = g.A.. \left( S_o - S_f - \frac{\delta h}{\delta x} \right)$$













## Input data – what do we need?

### Topographical

- Cross-sections of river and floodplain
- Longitudinal profile (Thalweg)
- Water levels (f(t))

### Hydraulic

- Discharge (f(t)) lateral discharges
- Friction coefficients
- Sediment transport (bottom / suspended)

### Topographical



- ? Distance between 2 cross-sections
- ? Boundaries of flood plains
- Altitude measurements should be the most accurate ones
- · Accuracy of measurements is influenced by:
  - mud
  - vegetation
  - obstacles in cross-section
  - soft bottom

### Hydraulic data - discharge measurements

- Integration of velocity field over cross-section
- Propeller meter or electromagnetic, acoustic velocity meter
- From bridge or from boat



# Hydraulic data – discharge measurements > Problems <

Velocity distribution — horizontal / vertical





Hydraulic data – discharge measurements > Problems <

#### Influence of

- Vegetation
  - velocity fluctuation as a function of time
  - slowing down propeller
  - block the propeller
  - local influence on velocity meter
- Stones or rocks
- Soft bottom
- Wind while measuring from a boat
- Measuring errors







# Input data

### How to determine the cross-section?







Solution: define cross-section with A, P and R equal to the average value of all cross-sections

>> Calibration of friction coefficient becomes very important !!!





## Input data

Water level variation along the river from Dolistowo to Osowiec (T = days)





How to determine the friction coefficient

- n = f (bottom roughness, shape cross-section, vegetation, obstacles, meandering, velocity distribution, ...)
- n = f (time, location, interaction of previous parameters)
- n must be determined from measurements





### Determination of n using:

- Uniform flow principle (Manning formula)
- Bresse equation

Manning n determination by calibration





# Hydraulic Modelling of open Channel Flow





# Hydraulic Modelling of open Channel Flow

Discharge variation in Goniadz: B-14



## **Conclusions and Questions**

- Flood-routing theory is quite simple
- Numerical solution methods are well developed
- Practical application is confronted with many inaccuracies
- · Good simulation results thanks to well considered calibration
- ? Definition of cross-section?
- ? Determination of longitudinal profile?
- ? Best way to determine the friction coefficient?
- ? Suggestions to improve measurements quality?

## Acknowledgements

T. Okruszko, S. Ignar, R. Michalowski, J. Chormanski, D. Swiatek, I. Kardel SGGW, Warsaw

L. Van Poucke, M. Huygens, R. Banasiak Hydraulics laboratory, Ghent University

**Universities of Brussels and Antwerp** 

Funding from Polish and Flemish government bilateral cooperation projects

**Biebrza National Park Authorities** 











