Relationships between biotic & abiotic conditions on Clara Bog (Ireland)

Sake van der Schaaf

Wageningen University, Dept. of Environmental Sciences, Water Resources Section

Jan G. Streefkerk

National Forest Service, The Netherlands

Contents

- Backgrounds
- Ecotopes
- Hydrologic concepts
- Results & conclusions

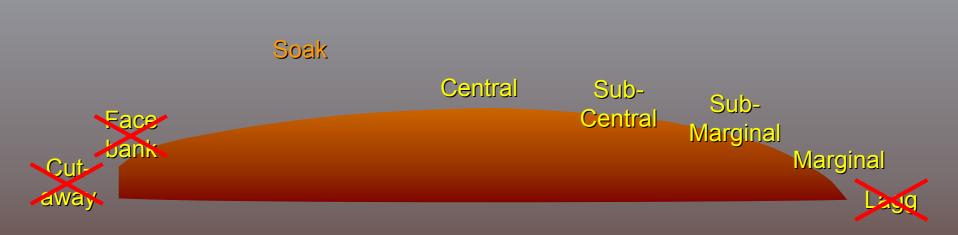
- Backgrounds
- Ecotopes
- Hydrologic concepts
- Results & conclusions

Irish-Dutch Raised Bog Study (1989-2001)

- Functioning bogs in Ireland and
- Conservation & regeneration experience in The Netherlands
- Topics
 - Geology, hydrology, vegetation
 - Hydrology: regional \rightarrow <u>bog system</u>
 - Vegetation: community $\rightarrow \underline{ecotope}$

Position of Clara Bog

Clara Bog (500 ha)



- Backgrounds
- Ecotopes
- Hydrologic concepts
- Results & conclusions

Ecotopes

- Based on supposed position on an idealised bog dome
- Defined by abiotic conditions:
 - Hummock-hollow
 - Mean water level & fluctuation
- Resulting in a differentiation by species composition

Ecotope positions

Central ecotope

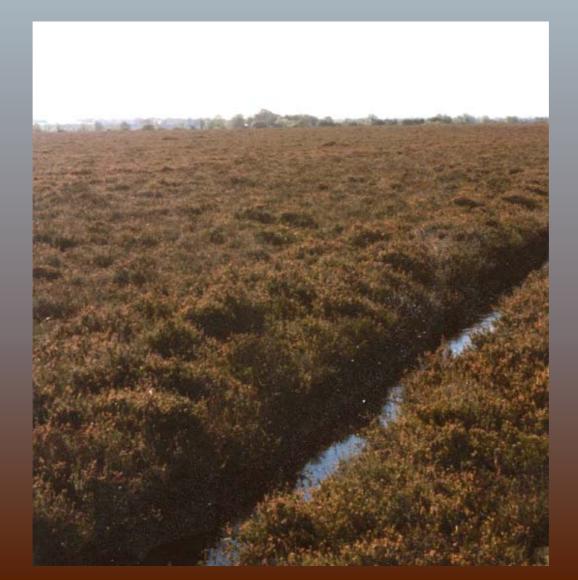
- Hummocks, hollows & pools
- Water level fluctuations: \leq 20 cm
- Acrotelm well developed
- Sphagnum cuspidatum in hollows & pools

Central ecotope (summer)

Central ecotope (winter)

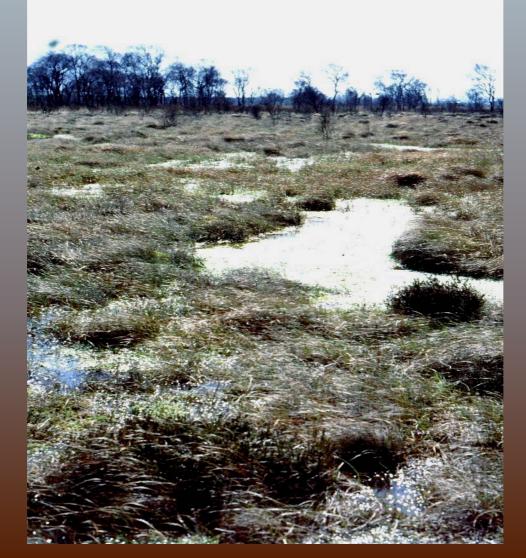
Marginal ecotope

- No hummocks & hollows
- Water level fluctuation 30-40 cm, mean 10-40 cm below surface
- Acrotelm: absent or poorly developed
- Dominated by Calluna vulgaris and Scirpus caespitosus


Sub-central & sub-marginal ecotopes

- Transitional between central and marginal
- Sub-marginal: Sphagnum tenellum and Narthecium ossifragum in hollows
- Sub-central: Hummock-hollow & Sphagnum magellanicum dominated lawns

Mostly sub-central ecotope


Sub-marginal ecotope

Soak ecotopes

- Wet to extremely wet
- Lawns and/or flat hummock-hollow microtopography
- Species which indicate slightly more minerotrophic conditions
- Discussed soaks are rheotrophic

Soak on Clara Bog (1)

Soak on Clara Bog (2)

Deviations from positional concept (1)

- Road with associated drains has caused unequal subsidence
- "Central" and "sub-central" are not always in the centre anymore
- "Marginal" is still at the margin
- "Sub-marginal" could be anywhere

Flow pattern after subsidence

Main areas with central ecotopes

500 m

Areas with rheotrophic soak ecotopes

- Backgrounds
- Ecotopes
- Hydrologic concepts
- Results & conclusions

Diplotelmic approach

- Acrotelm is the only aquifer
- Darcy's law is assumed to apply
- Hydraulic gradient ≈ surface slope
- The surface slope is approximately constant over the seasons

Acrotelm transmissivity $T_{\rm a}$

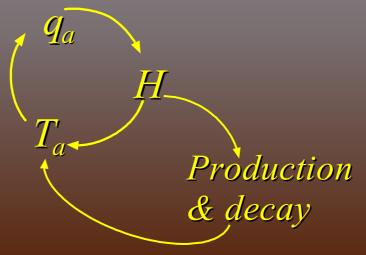
 T_a is related to flux q_a [L²T⁻¹] and hydraulic gradient by Darcy's law:

$$q_{\rm a} = -T_{\rm a} \frac{\mathrm{d}H}{\mathrm{d}s}$$

- The hydraulic gradient dH/ds is approximately equal to surface slope I
- *I* is approximately constant in time
- Main relationship is $q_a \Leftrightarrow T_a$
- <u>Not</u> $q_a \Leftrightarrow dH/ds$

Consequences

In an undisturbed bog:


- effective $T_{\rm a}$ adjusts itself to accommodate $q_{\rm a}$
- surface flow occurs only at peak discharges when hollows and pools interconnect
- In a disturbed bog:
 - surface flow compensates for a low attainable T_a already at relatively small discharges

How does it work?

- The acrotelm is a result of production and decay of organic matter
- Production and decay rates
 - affect pore size and hydraulic conductivity
 - are controlled by hydrological conditions
- Feedback loop of hydrology and production ecology

Regulation loop $q_a \Leftrightarrow T_a$

- <u>Pore size</u> decreases downwards (decay)
- <u>Hydraulic conductivity</u> is proportional to the square of pore size (Poiseuille's law)
- T_a depends on phreatic level H and H on q_a

Estimating $q_{\rm a}$

- Define a flow path from surface levels
- q_a follows from specific discharge v_a [LT⁻¹], upstream area A_u and flowpath width w:

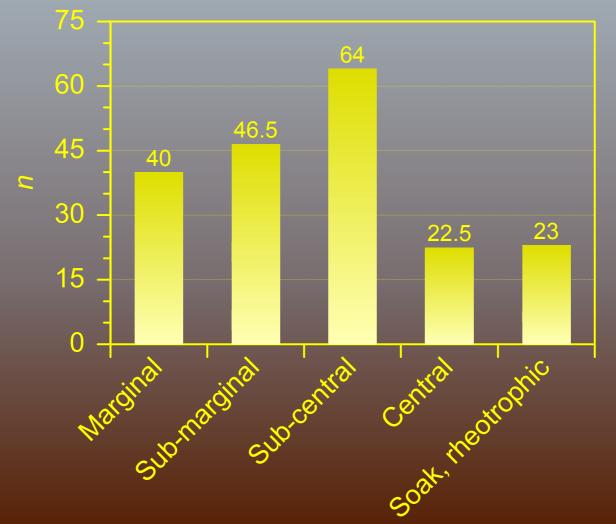
$$q_a \approx \frac{A_u v_a}{w}$$

<u>Simpler</u>: use flow path length L_u instead of
A_u & w and correct for flow pattern

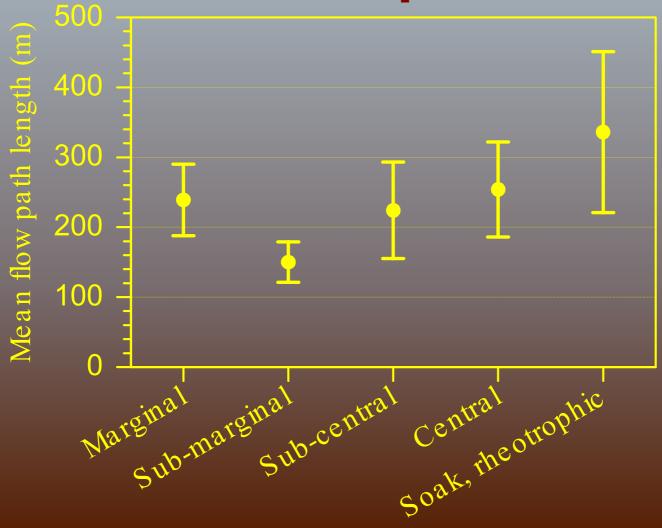
Potential T_a is estimated from

$$T_{\rm a} \approx \frac{-q_{\rm a}}{I} \approx \frac{-A_{\rm u}v_{\rm a}}{W I} \approx \frac{-L_{\rm u}v_{\rm a}}{f I}$$

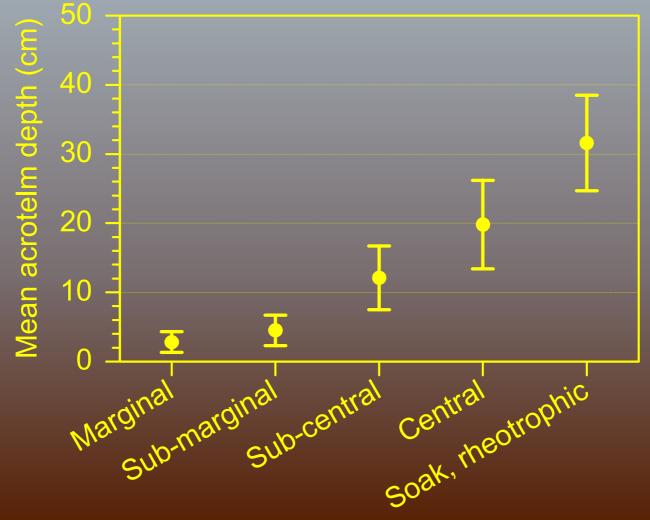
- f is a correction factor for flow pattern
 - Parallel flow $\rightarrow f=1$
 - Radially diverging flow $\rightarrow f=2$
 - Converging flow $\rightarrow 0 < f < 1$

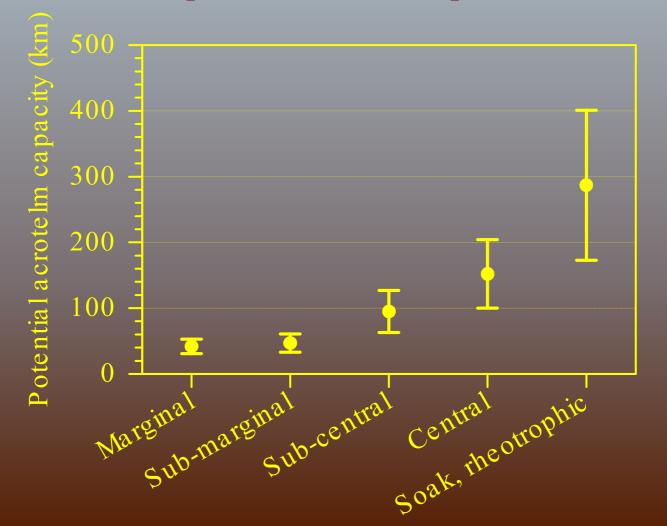

Assessing ecological potential

• By a single value quantity provisionally called <u>potential acrotelm capacity</u> $\tau_a = T_a/v_a$ [L]


$$\tau_{a} = \frac{T_{a}}{v_{a}} \approx \frac{-A_{u}}{wI} \approx \frac{-L_{u}}{fI}$$

- Backgrounds
- Ecotopes
- Hydrologic concepts
- Results & conclusions


Number of data points per ecotope


Flow path lengths per ecotope

Acrotelm depth per ecotope $(\leq H3)$

Potential acrotelm capacity per ecotope

Conclusions

- For Atlantic raised bogs with a usually limited differentiation in microtopes, the concept of *potential acrotelm capacity* gives a useful link between ecotopes and hydrology
- The concept is probably useful in predicting the ecological potential of bog remnants

Points for further research

- What are critical levels for τ_a ?
- To what extent do they differ by climatic region?
- To what extent should the concept be modified to be useful in bogs with more patterning and pool systems?

Example: Männikjärve Bog (Estonia)

Example: Männikjärve Bog (Estonia)

Area of oriented pools & strings with redistribution of water

Thank you for your attention